Introduction to percentages Each day covers one maths topic. It should take you about 1 hour or just a little more.

Carefully read through the Learning Reminders
Tackle the questions on the Practice Sheet. There might be a choice of either Mild (easier) or Hot (harder)!

Learning Reminders

Introduction to percentages.

Introduction to percentages.

10 small squares are shaded this time. That is equivalent to 10% of the whole square.

The symbol ' $\overline{\text { ' means }}$ 'equivalent to'.

$$
{ }^{10} /{ }_{100} \equiv{ }^{1} /{ }_{10} \equiv 10 \% \equiv 0.1
$$

That's a lot of different ways to write the same amount!

Introduction to percentages.

50 small squares are shaded. That is equivalent to 50% of the whole square.
$50 \% \equiv 50 / 100 \equiv 5 / 10 \equiv 1 / 2 \equiv 0.5$

75 small squares are shaded. That is equivalent to 75% of the whole square.
$75 \% \equiv 75 / 100 \equiv 3 / 4 \equiv 0.75$

Summer term year 5 WB 13.07.20 Maths
Monday

Summer term year 5 WB 13.07.20 Maths
Monday

$\frac{\mathrm{S}}{\mathrm{I}}=\mathbf{Z} \cdot \mathbf{0}=\% 0 \boldsymbol{6} \quad 6 \cdot \partial$

Investigation Percentage explorers

You will need:

- squared paper

What to do:

- Draw seven 5×2 rectangles on squared paper.

Each therefore has an area of 10 squares.

- Shade small squares in each grid to show the following percentages.

- In each case how many squares are coloured in?
- Which of the percentages resulted in some of the small squares being halved?
- Predict how many squares would be coloured in for each percentage if the rectangle measured 5 by 4 squares.
- Now check your predictions, were any squares halved this time?

Summer term year 5 WB 13.07.20 Maths
Monday

Use Frog (counting up) to subtract pairs of decimal numbers. Carefully read through the Learning Reminders.

Learning Reminders

Use Frog (counting up) to subtract pairs of numbers.

Harry's best javelin throw at sports day last summer was 9.67 metres, but today he has thrown a huge $\mathbf{1 1 . 3 2}$ metres! How much further has he thrown?

> We can use FROG to count up to find the difference in the throws.

1. Frog jumps 0.33 m from
9.67 m to the next whole number of metres.
2. Frog next jumps 1.32 m from 10 m to 11.32 m .
1.32 m

Use Frog (counting up) to subtract pairs of numbers.

Distance	Measurement
Classroom width	4.56 m
Classroom length	5.3 m
Hall length	10.4 m
Hall width	7.56 m
Table width	0.5 m
Table length	1.25 m

How much longer is the classroom than it is wide?

We draw an empty number line jotting to show how we could find this difference.

We need to be careful about place value when adding tenths to tenths and hundredths to hundredths.

0.04 to 4.6 , then 0.4 to 5 , or one big jump of 0.44 .

$$
0.4 m+0.3 m+0.04 m=0.74 m, \text { or } 74 \mathrm{~cm}
$$

Tuesday

Practice Sheet Mild
 Subtracting decimals

Use Frog to solve these subtractions.

1. $3.5-2.9$
2. 5.2-3.7
3. $9.1-5.8$
4. $7.2-6.85$
5. 8.3-4.75
6. 9.23-7.8

Challenge

Make up at least 5 subtractions with an answer of 1.4

Tuesday

Practice Sheet Hot

Subtracting decimals
Use Frog to solve these subtractions.

1. 7.3-6.79
2. 8.45-7.8
3. $5.24-3.7$
4. $9.4-5.78$
5. 8.7-6.45
6. 7.5-5.29
7. 10.67-5.3
8. 12.8-9.27

Make up at least 5 subtractions with an answer of 3.15

Investigation Decimal differences

1. Use counting up to work out 9.8-7.65. Keep a note of both the subtraction and the answer.
2. Now work out $8.7-6.54$. Keep a note of the subtraction and your answer.
3. Carry on this pattern of subtractions. 7.6-5.43, 6.5-4.32, 5.4-3.21, making a record of all your subtractions and their answers.

Can you predict the answer to the next subtraction?
Why do you think the sequence of subtractions gives such a pattern?
4. Now try 12.3-4.56
23.4-5.67

34.5-6.78 and so on.

What happens this time? This is a harder pattern to explain!
Look at how the whole number parts of the pair of numbers in each subtraction are increasing, and then how the decimal parts are increasing.

Investigate your own sequences of subtractions with consecutive
digits, e.g. $9.87-6.5$
8.76-5.4
7.65-4.5

For this sequence, you can use place value to subtract rather than counting up. See what other patterns you can find. Why do you think they occur?

Wednesday

Equivalence between percentages and fractions.
Learning Reminders

Equivalence between percentages and fractions.

> It is helpful to remember common equivalent fractions and percentages.
$1 / 10 \equiv 10 \% \quad 1 / 5 \equiv 20 \% \quad 1 / 4 \equiv 25 \% \quad 1 / 2 \equiv 50 \%$

If we remember that $1 / 10 \equiv 10 \%$, we can find other tenths by multiplying the percentage.
E.g. $3 / 10 \equiv 30 \%$ and $7 / 10 \equiv 70 \%$.

$$
\begin{aligned}
& \text { If } 1 / 4 \equiv 25 \%, 3 / 4 \equiv 75 \%, \\
& \text { since } 3 \times 25=75 .
\end{aligned}
$$

Equivalence between percentages and fractions.

A class of children are asked to choose between swimming, cycling and football. $1 / 4$ chose swimming. $3 / 10$ of them prefer cycling. What percentage chose football?

$$
\begin{aligned}
& \text { Put the information we have into a bar } \\
& \text { model and fill in the equivalent }
\end{aligned} \quad 1 / 4 \equiv 25 \%
$$

percentages for swimming and cycling

$$
3 / 10 \equiv 30 \%
$$

Class of children			
$1 / 4$ $\mathbf{2 5 \%}$ Swimming	3 10$\quad 30 \%$?	
Cycling		Football	

The percentages MUST add to 100% so that everyone in the class is included.

25\% + 30\% + ? = 100\%
So 45\% chose football.

	solddo „əృコ⿺辶 $\frac{01}{\varepsilon}$
	UOו＋501」

	6 6upko sojend $\frac{\text { I }}{\text { L }}$
	6u！̣um＠
26미ueวjod	U01＋50．d
би！шш！мя＇бu！！	

	səjddD
	spubudq
－6ロ¢ues．ed	
t！nly әt！ 	

－6D¢Uəэ」əd	UOItPD．

sə6D＋Uəつ」əd＋uəpD！！nbヨ

Investigation
 Percentage professionals

What to do:

- Take an A4 piece of paper. Fold it in half, half again, half again and half again.
- Open it. There should be 16 sections.
- In the top 8 sections, write the following percentages:

- In the other 8 sections, write a fraction equivalent to each of the percentages (you'll need $\frac{1}{100}, \frac{1}{10}, \frac{1}{5}, \frac{1}{4}, \frac{1}{2}, \frac{3}{5}, \frac{3}{4}$ and $\frac{9}{10}$).
- Now cut up the sheet so you have 16 cards.

Try this...

- Without looking, remove one of the 16 cards.
- Spread out the remaining 15.
- How quickly can you figure out which one is missing?
- Repeat several times.
- Try removing 2 cards.
.. or play this game of Percentage Pelmanism
- Turn over all of the 16 cards and arrange in a 4 by 4 grid.
- Choose two cards to turn over.
- If they are a pair of equivalent fractions/percentages, keep them; if not, turn them over and choose two more.
- How many turns does it take to find all 8 pairs?

Thursday

Use equivalent fractions to find percentages.

Learning Reminders

Use equivalent fractions to find percentages.

Unit fractions always have a
numerator of 1, e.g. $1 / 2,1 / 4,1 / 10$.
To find $1 / 4$ of 80 divide $\mathbf{8 0}$ by 4 . $1 / 4$ of $\mathbf{8 0 = 2 0}$.
Remember we can find unit
fractions of a number by dividing by the denominator (bottom number) of the fraction.

Non-unit fractions always have a numerator (top number) of more than 1, e.g. $3 / 4,2 / 5,7 / 10$.

Remember we can find non-unit fractions of a number by dividing by the denominator, then multiplying by the numerator of the fraction.

Use equivalent fractions to find percentages.
Hamilton Primary school has a $£ 500$ grant to spend to improve the outside space. All $\mathbf{2 0 0}$ children were asked to vote for what they would like. $\mathbf{5 0} \%$ voted for a wildlife pond, $\mathbf{2 5 \%}$ voted for a climbing frame, and $\mathbf{2 5 \%}$ voted for friendship benches.

We can use equivalent fractions to help find percentages!

Thursday

Use equivalent fractions to find percentages.
Moreton Primary also has $\mathbf{£ 5 0 0}$ grant. They have $\mathbf{1 5 0}$ children. $\mathbf{1 0 \%}$ voted for the friendship benches, $\mathbf{2 0 \%}$ for a climbing frame and $\mathbf{7 0 \%}$ for a wildlife pond.
$1 / 10$ of $150=150 \div 10=15$. 15 children voted for friendship benches.
10% is
equivalent to
$1 / 10$, so we can find $1 /{ }_{10}$ of 150 .

To find 70\% multiply the answer for 70\% by $7.15 \times 7=105$.
105 children voted for a wildlife pond.

Practice Sheet Hot
 Comparing percentages

The following new woodlands have been planted:

Burley Common
100 trees
50% oak, 20% ash, 15% beech, 15% willow

Merttens Meadow

150 trees
20\% oak, 20\% hazel, 40% willow, 20\% beech

Chidgey Common

200 trees
40\% oak, 30% beech, 10% ash, 20% sweet chestnut

Holes Hollow

120 trees
25% oak, 10% hazel, 15% willow, 30% beech, 20% ash

Calculate how many trees of each type there are in each of the four woodlands.

Challenge

In Weston Wood, there are 280 trees, as follows:
14 holly
126 lime
84 beech
56 silver birch.
What percentages do these numbers represent?

MO|!М \%

PI!W +əә૫S әכ!+วロ」d

Summer term year 5 WB 13.07.20 Maths
Practice Sheets Answers Monday
20\%
3\%
10\%
50\%
25\%
75\%
99\%
15\%
46\%
80\%

Practice Sheets Answers

Explore more Hamilton Trust Learning Materials at https://wrht.org.uk/hamilton

Percentages (hot)
$20 \%=0.2=20 / 100=2 / 10=1 / 5$
$3 \%=0.03=3 / 100$
$10 \%=0.1=10 / 00=1 / 10$
$50 \%=0.5=50 / 100=5 / 10=1 / 2$
$25 \%=0.25=25 / 100=1 / 4$
$75 \%=0.75=75 / 100=3 / 4$
$99 \%=0.99=9 / 100$
$15 \%=0.15=15 / 100=3 / 20$

Summer term year 5 WB 13.07.20 Maths
$46 \%=0.46=46 / 100=23 / 50$
$80 \%=0.8=80 / 100=8 / 10=4 / 5$

Tuesday

Practice Sheets Answers

Subtracting decimals (mild)

1. $3.5-2.9=0.6$
2. $5.2-3.7=1.5$
3. $9.1-5.8=3.3$
4. $7.2-6.85=0.35$
5. $8.3-4.75=3.55$
6. $9.23-7.8=1.43$

Challenge

Accept any calculations with the correct answer of 1.4, e.g. 6.8-5.4 = 1.4, $3.1-1.7=1.4 \mathrm{etc}$.

Subtracting decimals (hot)

1. $7.3-6.79=0.51$
2. $5.24-3.7=1.54$
3. $8.45-7.8=0.65$
4. $8.7-6.45=2.25$
5. $\quad 9.4-5.78=3.62$
6. $\quad 10.67-5.3=5.37$
7. $\quad 7.5-5.29=2.21$
8. $\quad 12.8-9.27=3.53$

Challenge

Accept any calculations with the correct answer of 3.15 , e.g. $8.75-5.6=3.15$

Wednesday

\%0Z	
\%0\&	Sulpho sojoud $\frac{01}{\text { Ex }}$
\%OS	

\%0Z	
\%0¢	\$400 ¢ojedd $\frac{01}{8}$
\%OS	s6op rajosd $\frac{\text { T }}{\text { T }}$
${ }^{\text {26bpuesjad }}$	UOHFDd

Children were asked to vote for cycling. swimming or football as their favourite weekend activity	
Fraction	
$\frac{1}{2}$ children prefer swimming	Percentage
$\frac{1}{4}$ prefer cycling	50%
The rest prefer football	25%

Children were asked to vote for oranges, bananas or apples as their favourite fruit	
Fraction	Percentage
$\frac{2}{5} \quad$ prefer bananas	40%
$\frac{3}{10} \quad$ prefer apples	30%
The rest prefer oranges	30%

Children were asked to vote for dogs, cats or rabbits as their ideal pet	
Fraction	Percentage
$\frac{1}{2}$ prefer dogs	50%
$\frac{1}{5}$ prefer cats	20%
The rest prefer rabbits	30%

Practice Sheets Answers

Practice Sheets Answers Thursday

Comparing percentages (mild)
Burley Common has:
50 oak, 20 ash, 15 beech and 15 willow.
Merttens Meadow has:
60 oak, 60 hazel, 120 willow and 60 beech.
Chidgey Common has:
80 oak, 60 beech, 20 ash and 40 sweet chestnut.
Holes Hollow has:
50 oak, 20 hazel, 40 willow, 30 beech and 60 ash.
Comparing percentages (hot)
Burley Common has:
50 oak, 20 ash, 15 beech and 15 willow.
Merttens Meadow has:
30 oak, 30 hazel, 60 willow and 30 beech.
Chidgey Common has:
80 oak, 60 beech, 20 ash and 40 sweet chestnut.
Holes Hollow has:
30 oak, 12 hazel, 18 willow, 36 beech and 24 ash.
Friday- day off
Last Day of term
Happy Holidays have a good time

